Протокол KNX для управления инженерными системами. Что такое KNX ABB для умного дома — как это работает? Компоненты knx

Умный дом на системе KNX.

Добрый день, дорогие читатели. В данной статье мы коснемся умного дома на системе стандарта KNX и решений фирм ABB, Gira и Jung.

Итак, Вы захотели сделать Умный дом и выбрали для реализации европейскую шину KNX.

Отличный выбор, так как эта система:

- распределенная и не имеет одного центра. Т.е. если сгорит один элемент, вся остальная система продолжит работу.

- каждое устройство стандарта KNX проходит сертификацию на соответствие стандарту .

- множество фирм производителей: ABB, Berker, Jung, Merten, Gira и пр. и у всех фирм есть взаимозаменяемые устройства.

Большинство фирм производителей это – Германия.

Приведем пример управляющих элементов разных фирм производителей:

Система визуализации ABB Busch-priOn, система управление Gira Control 9 на основе Home Server 4 и Jung Smart Pilot. У каждой из этих устройств есть свои особенности, но самое главное, что они взаимозаменяемы, т.е. вы сможете к реле и диммерам фирмы Gira поставить управляющий элемент ABB Busch-priOn.

На данной картинке мы попытались показать, как выглядит топология сети с использованием технологии KNX.

Система KNX построена из трех основных компонентов:

Управляющие модули (выключатели, датчики, ик-приемники)

1) ABB Busch-priOn

3) Терморегулятор Gira

4) Датчик Merten

Исполнительные модули (реле, диммеры, модули штор, регуляторы тепловые, ик-передатчики)

1) модуль штор

2) модуль диммера

3) модуль реле

4) модуль сервопривода

5) ИК передатчики

Системные модули (интерфейсы и блоки питания)

1) Блок питания

2) интерфейсный модуль

Дополнительные устройства

1) wi-fi роутер

2) Ipad с установленной программой Iridium mobile

Для соединения устройств между собой используется кабель стандарта KNX. Соединение происходит последовательно-параллельно, т.е. каждое последующее устройство подсоединяется параллельно следующему. Соединение звездой запрещено. Так как система сертифицированная, то программировать и производить пусконаладку систем Умного дома стандарта KNX могут только сертифицированные специалисты прошедшие курсы повышения квалификации в центрах KNX. В нашей компании есть специальный штат инженеров, обученный в России и в Европе по стандарту KNX.

Рекомендуем данную систему для реализации климат-контроля: управление кондиционированием, вентиляцией, теплыми полами, конвекторами и радиаторами вместе по своей логике. Вам же надо будет задать только желаемую температуру!

KNX: Введение.

Больше удобства, больше безопасности, меньшее энергопотребление: спрос на системы для управления зданиями постоянно увеличивается.

Идет ли речь о доме на одну семью или о большом офисном комплексе, спрос на комфорт и гибкость при управлении системами контроля доступа, освещением и кондиционированием воздуха постоянно растет. В то же время все большую значимость приобретает эффективность энергопотребления. Тем не менее, большего комфорта и безопасности при меньшем энергопотреблении можно достичь лишь при использовании “умных” систем контроля и мониторинга, управляющих работой различных вовлеченных систем. Это подразумевает использование большего количества проводных сетей, связывающих сенсоры и исполнительные механизмы с центральными устройствами, осуществляющими контроль и мониторинг. Подобное количество проводов, в свою очередь, означает увеличение трудозатрат на проектирование и установку таких систем, рост пожароопасности и резкое увеличение финансовых затрат.

Ответ: KNX - единственный в мире открытый СТАНДАРТ для управления квартирами и зданиями.

Чтобы передавать управляющие сигналы ко всем компонентам, отвечающим за управление зданием, необходима система, способная взаимодействовать с отдельными устройствами; для этого все ее компоненты должны уметь “общаться” между собой на едином языке: если говорить кратко, для этого требуется шинная технология KNX, единая для всех производителей оборудования и программных приложений. Данный стандарт основан на более чем 15-летнем опыте разработки и проектирования, в том числе и систем-предшественниц KNX, технологий EIB, EHS и BatiBUS. При использовании канала передачи управляющих сигналов KNX, к которому подключаются все другие шины (витые пары, радиочастотные каналы, электрические линии или IP/Ethernet), подключенные к ним устройства получают возможность обмениваться информацией между собой. К шинам могут подключаться как сенсоры, так и исполнительные механизмы, необходимые для контроля оборудования, управляющего зданием, в частности, систем освещения, штор, жалюзи и ставен, систем безопасности, систем контроля энергопотребления, систем отопления, вентиляции и кондиционирования воздуха, сигнальных систем, систем мониторинга, систем дистанционного управления, измерительного оборудования, систем управления аудио и видео, крупной бытовой техники, интерфейсов коммунальных систем и других систем управления зданием и т.д. Все эти функции могут осуществляться, контролироваться и отслеживаться через единую общую систему, без использования каких-либо дополнительных центров управления.

Освещение

Управление шторами, жалюзи и ставнями

Системы безопасности

Управление энергопо-треблением

Системы отопления, вентиляции и кондиционирования воздуха

Системы мониторинга

Дистанционное управление

Осуществление измерений

Управление аудио и видео

Крупная бытовая техника


KNX: Краткий словарик.

“Всемирный” означает

Использование по всему миру: технология KNX нашла широкое применение в области управления квартирами и зданиями по всему миру. Существует несколько миллионов установленных и успешно эксплуатируемых KNX-систем, причем не только по всей Европе, но и в странах Дальнего Востока и Северной и Южной Америки, что является доказательством того, насколько привлекательно использование технологии KNX. В мире существует более 100 компаний-членов Ассоциации KNX, которые предлагают в своих каталогах почти 7000 групп KNX-сертифицированных продуктов для различных приложений.

“Открытый стандарт” означает

Стандарт KNX одобрен в качестве Международного стандарта (ISO/IEC 14543-3), Европейского стандарта (CENELEC EN 50090 и CEN EN 13321-1) и Китайского стандарта (GB/Z 20965).

Таким, образом, будущее KNX обеспечено. KNX-совместимые продукты от различных производителей можно использовать в составе единой системы – торговая марка KNX гарантирует их рабочую совместимость и взаимозаменяемость.
Таким образом, KNX является единственным в мире открытым «умным» стандартом для контроля безопасности коммерческих и жилых зданий.

“Управление квартирами и зданиями” означает

Преимущества в зданиях любого типа: Начиная с офисных комплексов, и кончая обычными жилыми домами. Какого бы типа ни было здание, использование технологии KNX открывает огромный спектр новых возможностей для создания систем управления зданием, при этом сохраняя их стоимость на приемлемом уровне.

Использование технологии KNX может предоставить решения, которые при использовании обычных методов создания подобных систем могут быть реализованы лишь с большим трудом. Контроль всех приложений в квартире или здании может осуществляться с одной сенсорной панели. Начиная с систем отопления, вентиляции и контроля доступа, и заканчивая дистанционным управлением всеми бытовыми электроприборами – KNX открывает совершенно новые пути для повышения комфорта, безопасности и экономного энергопотребления в квартирах и зданиях.

KNX: единая технология, обеспечивающая множество преимуществ.

Использование KNX обеспечивает реальные преимущества для архитекторов, проектировщиков и производителей работ , а также, в первую очередь, для владельцев и/или пользователей зданий .

  • Низкие эксплуатационные расходы и значительное снижение энергопотребления.
    Освещение и отопление включаются только тогда, когда они действительно нужны, например, в соответствии с заданными временными программами и/или лишь при реальном присутствии людей, что позволяет экономить и электроэнергию, и финансовые средства. Более того, освещение может контролироваться автоматически в соответствии с реальной интенсивностью дневного света, что помогает обеспечивать минимальный необходимый уровень яркости освещения на каждом рабочем месте и снижать энергопотребление (включенными остаются только те источники освещения, которые действительно необходимы).
  • Экономия времени.
    Связывание всех устройств, обменивающихся между собой информацией, с помощью одной общей шины заметно сокращает время проектирования системы и время ее установки. Уникальный инженерный программный пакет ETS, общий для всех производителей и программных приложений, позволяет осуществлять проектирование, отладку и настройку систем, содержащих в своем составе KNX-сертифицированные элементы. Поскольку этот программный пакет является единым для всех производителей, интеграторы систем могут объединять в проекте продукты от различных производителей, использующие различные каналы для обмена информацией (витые пары, радиочастотные каналы, электрические линии или IP/Ethernet), в составе единой системы.
  • Гибкость и способность адаптироваться к будущим изменениям.
    KNX-система может быть легко приспособлена к выполнению новых задач и может быть легко расширена. Новые компоненты можно с легкостью подключать к уже работающей системе.

Ассоциация KNX: Ваша гарантия на использование общемирового стандарта!

Инициатором создания и продвижения стандарта KNX является KNX Ассоциация, группа ведущих компаний, чья деятельность связана со многими областями управления зданиями и квартирами. В настоящее время Ассоциация KNX включает в себя более 100 членов, на долю которых приходится производство более 80% устройств для управления квартирами и зданиями, продаваемых в Европе. Общей целью этих компаний является способствование разработке систем для управления зданиями вообще, а также стандарта KNX в качестве единственного в мире открытого СТАНДАРТА для управления квартирами и зданиями. Всемирная Ассоциация KNX имеет партнерские соглашения с более чем 21000 компаний-интеграторов оборудования в 70 странах, с более чем 50 техническими университетами и более 100 центрами обучения.

Обзор стандарта KNX


И. КУТЕПОВ, г. Санкт-Петербург

На рынке оборудования для автоматизации зданий и помещений сегодня имеется много различных устройств и систем. В прошлом разработчики всегда стремились применить в них свои идеи, инновации и протоколы обмена информацией. Освещением управляли по одному протоколу, кондиционированием - по другому, вентиляцией могли и по третьему. Но возникла необходимость обеспечить совместимость этих систем и иметь для них один универсальный протокол. Сегодня всё большее применение получают устройства автоматики, управляемые и общающиеся между собой по протоколу KNX. В предлагаемой статье описаны основные особенности этого протокола.

Протокол KNX даёт возможность легко объединять различные инженерные системы в единый комплекс. Это позволяет снизить стоимость автоматизации и повысить надёжность из-за отказа от различных преобразователей и шлюзов для соединения устройств, работающих по разным протоколам.

KNX стал протоколом, который отвечает всем этим требованиям. Он позволяет управлять различными системами как в комплексе зданий, так и в отдельной квартире и хорошо интегрируется в другие системы. Описан этот протокол в международном стандарте ISO/IEC 14543-3.

Все устройства, согласно KNX, объединяются в распределённую сеть, в которой не нужен центральный компьютер. Технология KNX позволяет контролировать работу всех задействованных систем и управлять ими без применения сложных центров управления. Можно назвать следующие преимущества KNX-систем:

Низкие эксплуатационные расходы;

Наглядность контроля и управления;

Возможность расширения существующей системы под новые задачи;

Возможность изменять настройки в процессе эксплуатации;

Предоставляя единый пакет программного обеспечения для осуществления проектирования систем, их настройки и эксплуатации,гарантирует совместимость и взаимодействие изделий разных производителей, используемых для выполнения необходимых функций.

Имеется возможность применить протокол KNX и в радиолюбительской практике. В качестве аппаратной платформы можно выбрать дешёвые и освоенные устройства. Например, Arduino и его модификации, Raspberry Pi, ODROID и др.

Технология KNX может быть применена в различных подсистемах "Умного дома":

Регулирование и управление освещением (его включение и выключение, в том числе автоматическое, изменение яркости, поддержание постоянной освещённости, управление посредством DALI (Digital Addressable Lighting Interface) - цифрового интерфейса с адресацией для осветительных приборов);

Отопление, кондиционирование и вентиляция (индивидуальное управление температурой в помещении, управления вентиляцией, отслеживания состояния окон), объединение их в единую систему. Полученные с датчиков сведения о температуре и состоянии воздуха используются для обеспечения оптимальных значений контролируемых параметров;

Управление жалюзи, ролл-ставнями и занавесами. Ролл-ставни, занавесы и жалюзи с регулировкой положения ламелей, в зависимости от угла падения солнечных лучей, обеспечивают оптимальное естественное освещение;

Охрана и безопасность (отслеживание состояния окон и дверей, противопожарная и дымовая сигнализация, подача сигналов тревоги и оповещения о несанкционированном проникновении, аварийных сигналов, имитация присутствия, освещение в режиме "Паника").

Принципы построения и функционирования KNX-системы

Система KNX состоит из датчиков, исполнительных устройств (актуаторов) и системных устройств. Все они объединены в KNX-сеть. Датчики подают сигналы о состоянии различных устройств и окружающей среды. Исполнительные устройства выполняют команды. Например, перемещают жалюзи, регулируют освещение, перекрывают клапаны подачи воды. К системным устройствам относятся, например, блоки питания, соединители линий, логические модули, 1Р-маршрутизаторы, GSM-шлюзы.

Для информационного обмена между элементами сети используются четыре вида сред передачи данных: физическая шина из витой пары проводов (KNXTP), электросеть (KNX PL), радиоканал на частоте 868 МГц (KNX RF), соединение по Ethernet (KNXnet/IP).

Подробно об особенностях построения сетей KNX можно прочитать в .

Чтобы KNX-система заработала, необходимо не только установить устройства и соединить их необходимыми кабелями между собой и с питающей сетью, но и запрограммировать устройства с помощью инженерного программного обеспечения ETS. До его загрузки необходимо назначить устройствам индивидуальные физические адреса, выбрать и настроить прикладные программы устройств, создать структуру групповых адресов и объединить в ней объекты связи, обозначив одни объекты как датчики, а другие - как исполнительные устройства. В пределах сети каждое устройство должно иметь индивидуальный физическии адрес.

Система может быть сконфигурирована в одном из следующих режимов:

Системный (S-mode) даёт полный доступ к конфигурированию всех устройств, включая проектирование, формирование групповых адресов и программирование (загрузка) устройств с помощью ETS. Используется для создания систем квалифицированными спе-
вание элементов системы с возможностью ручного изменения некоторых параметров. В последних вариантах стандарта KNX от него отказались.

Среда передачи информации -шина

Система KNX со связью по физической шине (витой паре проводов) работает от безопасного сверхнизкого напряжения питания SELV (Safety Extra Low Voltage), максимальное значение которого 29 В. Оно поступает на все устройства по той же витой паре, что и информация. Шина всегда надёжно изолирована от электросети, и прикосновение к ней не может причинить вреда человеку.

При использовании шины стандарт KNX предусматривает иерархическое деление на линии и зоны. Нижнее звено системы - сегмент линии, объединяющий до 64 шинных устройств. Линия может состоять как из одного сегмента, так и из нескольких (до четырех), связанных через линейные усилители.

Возможная топология линии показана на рис. 1. Допустимое число шинных устройств, подключённых к одной линии, зависит от выбранного источника питания и электропотребления конкретных устройств. В пределах линии допускаются максимальная длина сегмента 1000 м, максимальное расстояние между источником питания и шинным устройством 350 м, максимальное расстояние между двумя источниками питания 200 м, максимальное расстояние между двумя шинными устройствами 700 м.

Через линейные усилители, как показано на рис. 2, линия может быть расширена дополнительными сегментами, максимальная длина каждого из них также 1000 м. Каждый сегмент должен быть подключён к своему блоку питания. Число параллельно включённых линейных усилителей не должно превышать трёх на каждую линию.

С помощью линейных соединителен до 15 линий могут быть подключены к главной линии и объединены в одну зону. Топология зоны показана на рис. 3. К главной линии также возможно подключение до 64 шинных устройств. Она должна иметь отдельный источник питания. Подключение линейных усилителей к зонным и главной линиям не допускается.

Несколько зон могут быть соединены между собой с помощью зонной линии, при этом каждая зона подключается к зонной линии через отдельный зонный соединитель. Зонная линия должна иметь собственный источник питания. К ней возможно подключение шинных устройств, максимальное их число сокращается с увеличением числа зонных соединителей. Зонная линия может соединять максимум 15 зон, объединяя, таким образом, в одну систему более 58000 шинных устройств.

Зонные и линейные соединители, а также линейные усилители - идентичные приборы. Задачи, которые они выполняют, определяются их местом в топологии сети, соответствующим этому месту физическим адресом и загруженной в прибор прикладной программой. Зонные и линейные соединители пропускают телеграммы только от устройств, принадлежащих строго к указанным линиям или зонам, линейные усилители пропускают все телеграммы.

Обмен информацией между отдельными шинными устройствами происходит путём отправления телеграмм. Оконечные нагрузочные резисторы для шины не требуются, и возможны её различные топологии. Скорость передачи - 9600 бит/с, среднее время отсылки и подтверждения приёма телеграммы - около 25 мс.

Информация по шине передаётся отдельными пакетами один за другим. В каждый момент времени передаётся только один пакет от одного конкретного шинного устройства. Из соображений надёжности для доступа к шине и обмена телеграммами применяется метод децентрализованного доступа CSMA/CA (Carrier Sense Multiple Access/ Collision Avoidance). Одновременный и независимый доступ к шине нескольких шинных устройств может привести к конфликтам между ними. Однако метод CSMA/CA гарантирует сохранность информации и оптимальное использование шины.

Благодаря дополнительному механизму учёта приоритета телеграммы информация (например, сообщения о неисправностях) обрабатывается в соответствии с уровнем её приоритета. Обмен информацией в сети KNX событийно управляем. Телеграммы отправляются только в том случае, если происшедшее событие требует передачи информации.

Структура телеграммы KNX ТР - базовая для других сред передачи. Поэтому она будет рассмотрена подробно.

Когда происходит некое событие (например, нажата кнопка), шинное устройство отправляет телеграмму. Передача начинается, если в течение интервала времени t, шина остаётся свободной. Как только телеграмма отправлена,
устройство ждёт в течение интервала t2 квитанцию получателя.

Устройство-получатель проверяет достоверность принятой информации с помощью контрольного байта и отправляет соответствующую квитанцию (табл. 1). Если получена квитанция NACK (информация принята с ошибками), то устройство-отправитель повторяет телеграмму до трёх раз. Если получена квитанция BUSY (шина занята), то устройство-отправитель перед повторением телеграммы выжидает некоторое время. Если устройство-отправитель не получает никакой квитанции, то телеграмма не повторяется. Квитанцию безошибочного приёма АСК все устройства, которым адресована данная телеграмма, передают одновременно и при этом передаются одинаковые посылки. Таким образом, при успешной передаче телеграммы конфликтов на шине не происходит.


Структура телеграммы показана на рис. 4. Она состоит из блоков: служебного, информационного (в котором сообщается о событии, например, нажатии на кнопку) и контрольного, позволяющего обнаружить ошибки приёма. Передаваемые двоичные разряды, в зависимости от их информационного содержания, объединяются в поля.

Контрольное поле и контрольный байт необходимы для бесперебойного обмена телеграммами. Они обрабатываются шинными устройствами, которым адресованы. Адресные поля содержат исходный адрес (адрес отправителя телеграммы) и адрес назначения (адрес получателя).

Адрес источника сигнала всегда физический. Он указывает, к какой зоне и к какой линии относится посылающий телеграмму прибор. При проектировании системы индивидуальный физический адрес закрепляется за каждым шинным устройством.

Адрес назначения определяет участников сеанса связи. Получателем, которому отправляется телеграмма, может быть как отдельный прибор, так и группа приборов, подключенных к одной линии или распределённых по разным линиям. Один и тот же прибор может входить в разные коммуникационные группы и иметь несколько групповых адресов. Групповые адреса определяют коммуникационные отношения внутри системы.

Поле информации служит для передачи собственно информационного послания: команд, сообщении, значении параметров, результатов измерений и пр.

Структура контрольного поля показана на рис. 5. Если хотя бы одно из устройств, которым адресована телеграмма, приняло ее с ошибкой и вернуло отрицательное подтверждение ("NACK"), то необходимо в разряд D5 контрольного поля повторно отправляемой телеграммы занести ноль. Благодаря этому признаку шинные устройства, получившие первичную телеграмму корректно, не станут исполнять команду повторно.

Приоритет учитывают, когда несколько устройств пытаются передать свои телеграммы одновременно. Приоритет каждого из них должен быть установлен заранее с помощью программного обеспечения ETS. По умолчанию у всех 1 устройств он низший.

Адрес назначения определяет, какие устройства должны получить телеграмму и выполнить соответствующие действия. Обычно это групповой адрес, с помощью которого можно обратиться одновременно к любому числу шинных устройств. Групповые адреса могут быть назначены устройствам системы вне зависимости от их расположения и физических адресов. Исполнительным устройствам-получателям телеграмм может быть назначено несколько групповых адресов, но датчики могут отправлять телеграммы только по одному адресу.

В сложных системах используют, как правило, трёхуровневую систему групповой адресации - главная группа/ средняя группа/подгруппа. Чтобы отличить физический адрес от группового, используется дополнительный семнадцатый разряд поля адреса получателя. Если в нём записан 0, то адрес физический, им адресуется только одно шинное устройство, а если записана 1, то адрес групповой, одновременно адресуются все устройства с этим адресом.

Объекты связи, между которыми устанавливается коммутация, могут иметь размер от 1 бита до 14 байт в зависимости от функции, выполняемой этим объектом. Устройства могут быть связаны с различным числом объектов. Например, у двухклавишного выключателя их будет минимум два размером в один бит каждый.

В телеграммах допускаются типы информации, перечисленные в табл. 2. Они были стандартизованы ассоциаций KNX, чтобы добиться совместимости одинаковых приборов (в частности, диммеров и таймеров) разных производителей. На интернет-сайте ассоциации www.knx.org можно найти полный перечень стандартизованных типов информации.


Среда передачи информации -электросеть

В качестве среды передачи информации в системе KNX может использоваться также электросеть 230 В. Прокладка дополнительных линий связи (витых пар) в этом случае не требуется. Все приборы, использующие технологию KNX PL, нуждаются лишь в подключении к фазному и нулевому проводам электросети. Применение KNX PL возможно как при модернизации старых систем, так и при установке новых.

Технология KNX PL соответствует су-шествующим в этой области европейским нормам, в частности, стандартам DIN EN 50065 "Сигнализация на низковольтных электрических установках в диапазоне частот от 3 до 148,5 кГц" и DIN EN 50090 "Системы электронные бытовые и для зданий". Использование электросети 230 В часто бывает решением проблемы в тех случаях, когда по каким-либо причинам проложить отдельную линию связи невозможно.

KNX PL, как и KNX ТР, предусматривает иерархическое деление системы на линии и зоны. Топология системы аналогична представленной выше на рис. 2. Самое малое её звено - линия. К ней может быть подключено до 255 шинных устройств. Специальных блоков питания не требуется, так как все шинные устройства питаются от электросети 230 В напрямую.

Замена линейных соединителей, применяемых для витой пары, на системные соединители позволяет преобразовать линии витой пары в линии KNX PL. Системные соединители связаны друг с другом через главную или зонную линию (витая пара). Отличие от сети на базе только витой пары состоит лишь в среде передачи данных.

Максимум 15 линий KNX PL с 255 шинными устройствами в каждой могут быть объединены через главную линию в одну зону. Физическое разделение между отдельными зонами выполняется с помощью заграждающих полосовых фильтров.

Поскольку электросеть 230 В исходно не предназначена для передачи информации, систему KNX PL приходится приспосабливать к параметрам уже имеющейся электропроводки. Характеристики этой проводки, важные для передачи информации, её импеданс и характерные помехи по большей части ещё не изучены. Техника передачи информации на базе технологии KNX PL обеспечивает наибольшую надёжность передачи информации в этих условиях. Система работает двунаправленно в полудуплексном режиме. Отправлять и принимать телеграммы может каждый прибор.

Для передачи информации в существующую электросеть(230 В, 50 Гц) вводят высокочастотные сигналы, используя частоты в соответствии с нормами EN 50065. Это 105,6 кГц (логическая 1) и 115,2 кГц (логический 0). Такой способ передачи называют SFSK (Spread Frequency Shift Keying: - расширенная частотная манипуляция). Максимальный уровень сигнала - 116 дБ относительно пиковольта. Скорость передачи достигает приблизительно 1200бит/с, передача телеграммы длится около 130 мс. Это гарантирует высокую надёжность системы при типичных характеристиках электросети.

Благодаря корреляционному методу сравнения и интеллектуальной коррекции искажённый помехами сигнал может быть восстановлен. Если телеграмма принята без каких-либо проблем, принимающее устройство отвечает на нее положительной квитанцией. С этого момента процесс отправки телеграммы считается завершённым. Если передатчик не получает ответа, процесс повторяется.

В KNX PL применяется метод децентрализованного доступа к среде передачи информации CSMA/CD (Carrier Sense Multiple Access/Collision Detection). Прежде чем какое-либо устройство начнёт отправлять телеграмму, оно проверяет, не отправляет ли в этот момент свою телеграмму другое. Если два устройства отправляют телеграммы одновременно, система распознаёт конфликт и процессы передачи телеграмм обоими устройствами прекращаются. Имеющиеся в них генераторы случайных интервалов времени обеспечивают отправление повторных телеграмм в разное время во избежание новых конфликтов.

Для предотвращения нежелательного взаимовлияния близко расположенных разных систем KNX PL используется системный идентификатор (ID), который может принимать значения от 1 до 255. Между собой общаются только приборы, имеющие одинаковые ID. Системный идентификатор играет важную роль и при построении крупных систем KNX PL. Если в системе имеется более одного системного соединителя, то неизбежно существуют несколько зон. Каждая из них получает свой ID.

Структура телеграммы KNX PL представлена на рис. 6. Поле проверки служит в ней для синхронизации передатчика и приёмника. Здесь передаётся строго определённая последовательность 0101. Вводные поля 1 и 2 представляют собой стартовый сигнал для принимающего устройства, сообщающий о начале телеграммы. Содержание обоих вводных полей одинаково - 10110000.

Среда передачи информации -радиоканал


Приборы системы KNX с радиоканалом в качестве среды передачи не образуют какой-либо иерархической структуры. Они могут устанавливаться в любых местах. Любой датчик может сообщаться с любым исполнительным устройством, находящимся в пределах дальности действия радиоканала.

Но дальность действия радиоканала строго ограничить невозможно. Поэтому KNX-радиотелеграммы могут быть получены даже приборами соседней KNX-радиосистемы. Чтобы избежать возникающего при этом взаимного влияния, каждый радиопередатчик KNX отсылает в составе телеграммы свой серийный номер. На телеграммы этого передатчика реагируют лишь те принимающие устройства, которым разрешена связь с устройством, имеющим его серийный номер.

Существуют и естественные ограничения дальности действия радиоканалов в зданиях, обусловленные наличием стен, потолков, мебели и других поглощающих и отражающих радиоволны объектов. Дальность действия может быть увеличена за счёт активных и пассивных ретрансляторов, благодаря которым радиосигналы могут распространяться даже через несколько этажей.

Система KNX может использовать для передачи информации как исключительно радиоканал, так и комбинацию различных коммуникационных сред: радиоканал, витую пару, электросеть. Для их объединения существуют соединители сред, позволяющие передавать информацию и команды устройств одной коммуникационной среды устройствам другой среды.

Частота связи в KNX RF лежит в полосе частот ISM (Industrial, Scientifc, Medical). Диапазоны частот для различных применений в пределах этой полосы строго определены. Максимальная излучаемая мощность - приблизительно 12 мВт. Радиосигнал каждого прибора должен занимать в эфире в среднем не более 1 % времени его работы (например, не более 0,6 с в минуту). Строго регламентированная продолжительность непрерывной работы на передачу позволяет избежать длительных взаимных помех, блокирующих радиоканал.

В KNX RF применяется частотная манипуляция сигналов FSK (Frequency Shift Keying). При этом логические ноль и единица обозначаются сравнительно небольшими отклонениями несущей частоты от среднего значения. В KNX RF средняя несущая частота - 868,30 МГц. Скорость передачи - 16384 бит/с с использованием манчестерского кодирования. При таком кодировании дополнительные перепады логического уровня 0-1 и наоборот обязательно происходят в середине интервала передачи каждого бита информации. Благодаря этому передающее и принимающее устройства могут быть легко синхронизированы.


Однонаправленные устройства посылают телеграмму сразу, как только в этом возникает необходимость. Благодаря ограничению средней длительности передачи конфликты в эфире практически исключены. Двунаправленные устройства перед отправкой телеграммы проверяют, свободен ли радиоканал. Если он занят, устройство откладывает отсылку телеграммы до освобождения канала.

KNX-радиотелеграмма состоит из нескольких информационных блоков, как показано на рис. 7, разделяемых полями защиты информации. В информационный блок входят непосредственно само сообщение (например, команда включения устройства или регулирования освещения) и специфическая информация, служащая для адресации.

Поля в начале и в конце телеграммы служат для синхронизации приёмника с передатчиком.

Первый информационный блок состоит из контрольного поля (4 байта), серийного номера KNX устройства (6 байтов) и поля защиты информации (2 байта). Структура блока показана на рис. 8. Контрольное поле имеет фиксированное значение 01000100.

Серийный номер позволяет однозначно опознать прибор. Его записывают в устройство при изготовлении и в дальнейшем не изменяют. Этот номер передают в каждой телеграмме. В приёмные устройства допустимые для них серийные номера передатчиков заносят при вводе этих устройств в эксплуатацию. Серийный номер служит не только для адресации шинных устройств, но и для разграничения соседних KNX-pa-диосистем.

Во втором информационном блоке, структура которого показана на рис. 9, наряду со стартовым и стоповым разрядами находятся также индивидуальный исходный адрес, адрес назначения и собственно сообщение. Индивидуальный адрес источника сигнала - это его физический адрес. Он используется только вышестоящими контроллерами или соединителями при программировании этих приборов и автоматически сообщается им при вводе в эксплуатацию.

В зависимости от типа доступа к устройствам, получающим сообщение, адрес назначения имеет разные функции. При физическом доступе, т. е. при программировании, адрес назначения служит индивидуальным исходным адресом устройства. В нормальном режиме (например, при передаче команды переключения) адрес назначения содержит номер запрашиваемого коммуникационного объекта в устройстве.
Сообщение содержит такую информацию, как, например, команды, оповещения, параметры настройки, измеренные значения. В одной KNX-радиотелеграмме могут передаваться и другие информационные блоки.

Среда передачи информации -Ethernet

IP-сеть и доступ к Интернету уже давно стали стандартом в современных зданиях. В крупных системах KNX IP-сеть используется также для пересылки телеграмм KNX в рамках сети KNX (так называемое решение "Fast Backbone"). Этот процесс также называют KNXnet/IP-маршрутизацией.

Через этот интерфейс система KNX может соединяться с Интернетом не напрямую. Для этого следует зарегистрироваться на сайте промежуточного провайдера и после ввода пароля запустить установление связи с выбранной системой KNX. Как только между систе-
мой KNX и провайдером установлена связь, с помощью стандартного браузера можно получать информацию от системы и осуществлять управление ею. Этим обеспечивается экономный доступ к системе KNX без постоянного IP-адреса и постоянного подключения к Интернету. Как правило, достаточно использовать контроллеры с пропускной способностью 10 Мбит/с.

Системное программное обеспечение KNX IP-устройств основано на использовании двух стековых протоколов. Для передачи информации через Ethernet необходим IP-стек с поддержкой протокола UDP (User Datagram Protocol), поскольку технология KNXnet/IP основана на передаче информации без организации соединения. С использованием протокола UDP происходят одноадресная и многоадресная передачи пакетов. KNX-стек действует поверх IP/UDP-стека. Это так называемое общее ядро KNX, которое должно быть реализовано в каждой модели устройств. KNX-стек использует IP/UDP-стек в качестве интерфейса для связи с системой. Преобразование KNX-пакетов в UDP-пакеты выполняется по протоколу KNXnet/IP. KNX-приложение использует доступ к API (Application Programming Interface) KNX-стека для взаимодействия со всей системой в целом.

Для многоадресной передачи как адрес назначения должен использоваться МАС-адрес, лежащий в интервале от 01-00-5Е-00-00-00 до 01-00-5E-7F-FF-FF (всегда начинающийся с 01-00-5Е). В протоколе IPv4 IP-адреса для многоадресной рассылки лежат в интервале от
224.0.0.0 до 239.255.255. В KNXnet/IP-системе для этих целей зарезервирован IP-адрес 224.0.23.12.

KNXnet/IP-телеграмма (рис. 10) базируется на TP-телеграмме, но содержит некоторые дополнительные поля.

Длина заголовка (1 байт) всегда одна и та же. Flo в последующих версиях протокола этот параметр может измениться.

Версия протокола (1 байт) показывает текущую версию KNXnet/IP-протокола. В настоящее время это версия - 1.0. Значение поля - ЮН.

Идентификатор сервиса (2 байта) указывает, какие действия должны быть выполнены. В табл. 3 показаны выделенные интервалы идентификаторов и соответствующие им сервисы.

Туннелирование - один из основных способов взаимодействия в системе KNX. По сути, это организация соединения точка-точка (unicast) от одного внешнего устройства к системе KNX. что позволяет видеть весь трафик и общаться непосредственно с отдельным устройством. Туннелирование часто используют для общения с KNX внешних систем, что необходимо для передачи телеграмм при непосредственном соединении через IP-сеть с конкретным KNX-устройством. Оно позволяет вести обмен информацией между внешним устройством с конкретным IP-адресом и устройством с конкретным физическим адресом в KNX-системе. Такая возможность применяется для дистанционного программирования устройств, обмена информацией, организации сервисов.

Важно обратить внимание на то, что подобное соединение можно организовать и внутри стандартного туннельного IP-канала. Например, можно создать защищённое SSH-соединение между терминалом и KNX-роутером.

Общая длина кадра KNXnet/IP (2 байта) указывается в байтах. При её определении учитываются и байты предыдущих полей.

Если передаваемых байтов больше, чем 252, первый байт поля длины имеет значение 0FFH (255), а второй содержит дополнительную информацию о длине.

Тело кадра KNXnet/IP описывает полезную информацию. Кадр состоит из заголовка, который включает в себя код сообщения (1 байт) и длину кадра (1 байт). Далее идёт так называемый cEMI-кадр, который в основном повторяет структуру ТР-теле-граммы. Контрольная сумма не используется, так как обнаружение ошибок при IP-коммуникации происходит в рамках IP-протокола. Кроме того, введено второе контрольное поле (1 байт), следующее за контрольным полем ТР. Во втором контрольном поле содержатся тип адреса назначения (1 разряд) и счётчик маршрутизации (3 разряда). Последние 4 разряда - так называемый расширенный формат кадра (Extended Frame Format, EFF). Он принимает значения 0000 для обычных кадров и 01хх для LTE (Logical Tag Extended - расширенный логический тэг) кадров. LTE - расширение стандарта KNX. Его применяют для систем отопления, вентиляции и кондиционирования. Для устройств в LTE-режиме должны быть назначены зоны (информация о местоположении, например, комната, этаж). Фактически зона - это структурированная информация, которая используется в качестве адреса назначения в телеграмме. LTE-телеграммы не могут быть приняты другими KNX-устройствами, за исключением тех, которые настроены специальным образом.

На практике мне не приходилось встречать широкого применения режима LTE, за исключением устройств фирмы Siemens. Они конфигурируют специальным инженерным программным обеспечением.

Безопасность протокола - один из ключевых вопросов. Поэтому необходимо хотя бы минимально обеспечить безопасность служб. В KNX безопасность рассматривается лишь частично. Мощных средств её обеспечения не предусмотрено, но есть возможность установить ключ на доступ к устройству (а именно, к его настройкам).

Однако эти ключи передаются в открытом виде. Очевидно, что перехват таких телеграмм открывает возможность несанкционированного доступа к устройству. Чтобы избежать его, необходимо включить в программное обеспечение алгоритм шифрования сообщений.


В KNX предусмотрены службы идентификации A_SetKey и A_Authorize. Подробно о них можно прочитать в официальной документации. Обе службы работают в режиме коммуникации без установления соединения. В стандарте предусмотрено, что каждое из устройств может иметь 255 различных кодов, сопоставленных с 255 различными уровнями (приоритетами) доступа. Каждый код состоит из четырёх байтов. Эти коды записываются в каждое устройство заранее.

С помощью службы A_SetKey можно повторно выбрать уровень доступа, причём новый уровень доступа не может быть выше старого. Работает она так:

На стороне отправителя формируется и передаётся получателю запрос A_SetKey.req;

На стороне получателя генерируется и отправляется извещение A_SetKey.ind;

После этого определяется, верен ли код и можно ли установить новый уровень доступа;

В случае успешной проверки обратно отправляется телеграмма с новым уровнем доступа A_SetKey.res;

Приём A_SetKey.res подтверждается отправкой сообщения A_SetKey. con;

Если получатель не установил новый уровень доступа, он возвращает в качестве значения уровня число 255.

При необходимости выяснить у устройства, верен ли код и какой уровень доступа он обеспечивает, используется служба A_Authorize. Она также состоит из запроса, ответа и подтверждения, как было описано выше.

Удалённое приложение может установить права для отправителя на чтение и запись информации в память. На основе этого можно реализовать другие службы, представляющие интерес для управления сетью.

Хочу упомянуть, что есть ещё один адаптированный под использование в KNX-системе протокол аутентификации - ElBsec. Он предназначен для установления сеанса обмена и базируется на защищённом варианте протокола Нидхема-Шрёдера - протокола для обмена ключами и аутентификации. Суть его в том, что в системе предусматривается дополнительное устройство, занимающееся генерацией и распределением сеансовых ключей. Эти ключи передаются остальным устройствам в зашифрованном виде. Подробнее с этим протоколом можно ознакомиться в .

Пример применения

Рассмотрим пример системы, представленный на рис. 11. Здесь датчик (выключатель) имеет физический адрес 1.1.1 и групповой адрес 2/1/3, а исполнительное устройство (реле) имеет физический адрес 1.1.2 и такой же, как у датчика, групповой адрес 2/1/3.

При нажатии на кнопку выключателя в линию связи посылается телеграмма, которая содержит некоторую служебную информацию, определяемую протоколом, и сведения о произошедшем событии (в данном случае это нажатие на кнопку) вместе с командой, как эти сведения использовать. Телеграмма направляется от устройства 1.1.1 по групповому адресу 2/1/3.

Все устройства, подключённые к сети, получают эту телеграмму, но лишь те из них, которые имеют групповой адрес 2/1/3, обрабатывают её, проверяют правильность приёма, отсылают телеграмму подтверждения и выполняют команду. В рассматриваемом случае замкнутся контакты реле и включится лампа.

Для выключения лампы датчик-выключатель посылает другую команду, всё повторяется, в результате реле размыкает контакты. Если исполнительное устройство занято или телеграмма принята с ошибкой, в ответ на нее устройство, посылавшее команду, получит информацию об этом. Через некоторое время телеграмма будет повторена и устройства, которые не смогли её принять и выполнить команду, получат второй шанс.

Отмечу, что все адреса и программы сохраняются в энергонезависимой памяти устройств KNX, поэтому их достаточно запрограммировать только один раз, причём не обязательно на объекте.

Заключение

В этой обзорной статье кратко рассмотрен стандарт KNX. Конечно, были рассмотрены далеко не все его возможности, поскольку тема очень обширна. Я постарался дать основные сведения и технические аспекты этой технологии. Надеюсь, тема статьи вызовет интерес. Более подробно с ней можно ознакомиться по документации, которая имеется в открытом доступе на сайте KNX-ассоциации www.knx.org . Много полезной информации можно найти и на сайте автоматизации зданий http://www.autobuilding.ru/articles . html, а также на сайте Российской национальной ассоциации Коппех .

Лучше всего пользоваться оригинальной англоязычной документацией. Переводы нередко содержат неточности.

ЛИТЕРАТУРА

1. Руководство по системной технике для автоматизации зданий и домов. 5-е изд., переработанное. - Центральный Союз немецких электротехников и IT-технологов (ZVEH), 2006.

2. Granzer, Kastner, Neugschwandtner. ElBsec: A Security Extension to KNX.- URL: http://www . knx.org/media/docs/downloads/ KNX-Partners/03%20-%20Becoming% 20a%20KNX%20Scientific%20Partner/2006-11 %20Scientific%20Conference%20Paper s%20Vienna/05_granzer-eibsec_security-knxsci06-website.pdf (05.02.2015).

Нажатие на уровень или перемещение ползунка отправляет в управляемую переменную число, соответствующее текущему положению ползунка.

1 Создайте переменную, которую нужно регулировать. Настройте ее, как показано в инструкции

2 Создайте уровень, настройте его следующим образом (cм. все настройки):

3 Перетащите переменную на уровень, в диалоге привязки переменной укажите:

Action Send Token - отправить переменной значение Value, взятое как текущее положения ползунка уровня в диапазоне Min...Max
Event for Action Событие интерфейса, связанное с кнопкой. При возникновении события, в переменную будет записано указанное значение
  • Press - отправить Value по нажатию
  • Release - отправить Value при отпускании
  • Move - отправлять все промежуточные значения Value при перемещении ползунка.
    добавляйте команду Delay (100) перед командой на событии Move, чтобы меньше нагружать оборудование (с командой Delay, Move будет срабатывать не чаще, чем раз в 100 мс)

Можно использовать все три события одновременно.

Add a feedback channel (Create a feedback channel) Поставьте эту галочку, т.к. нужно, чтобы ползунок уровня перемещался в соответствии с актуальным состоянием переменной

4 Теперь переменная связана с уровнем. Посмотреть все связи можно в OBJECT PROPERTIES > Programming

вариант 2 Управлять RGB лентой с помощью палитры

В качестве палитры можно использовать любой цветной элемент - перемещая палец по элементу, вы будете отправлять оборудованию команду установки выбранного цвета.

Это требует добавления в проект специального скрипта - библиотеки RGB. Скрипт необходимо добавить только 1 раз, далее можно использовать его для управления RGB лентами любых встроенных драйверов iRidium.

2.1 Создайте палитру и вспомогательные элементы. В качестве палитры можно использовать любое цветное изображение.

  • Настройте палитру как Joystick с диапазоном регулирования 0...100 по Х и Y
  • Настройте неактивный элемент Button, который будет отображать выбранный на палитре цвет
  • Если нужно, настройте активные кнопки Button, которые будут пошагово изменять яркость ленты

2.2 Скачайте файл RGB_Library.js

Этот файл обеспечивает управление цветом с помощью JavaScript. Добавьте файл в проект визуализации: откройте проект в iRidium Studio, нажмите клавишу , выберите пункт (+) "Add Script From File"

2.3 Создайте пустой файл скрипта: (+) "New Script", чтобы добавить в него описание вашей RGB палитры:

В файле скрипта опишите палитру и элемент для отображения выбранного цвета:

/////// optional parameters /////////////////////////// IR.GetItem ("Page 1" ) .GetItem ("Item Display 1" ) , // Item "Display" )

Расширенный вариант содержит кнопки управления яркостью:

Палитра, отображение цвета и кнопки +/- для управления яркостью

///////// Copy this function to make one more RGB palette /////// RGB_player( "Driver" , // Driver in project "Channel Red" , // Name of Red Channel "Channel Green" , // Name of Green Channel "Channel Blue" , // Name of Blue Channel 255 , // Top limit for RGB channel (100 or 255) IR.GetItem ("Page 1" ) .GetItem ("Item Color Picker 1" ) , // Item "Color Picker" /////// optional parameters //////////////////////////// IR.GetItem ("Page 1" ) .GetItem ("Item Display 1" ) , // Item "Display" IR.GetItem ("Page 1" ) .GetItem ("Up 1" ) , // Item "Up" IR.GetItem ("Page 1" ) .GetItem ("Down 1" ) , // Item "Down" 10 // Increment step for "Up" and "Down" )

В описании укажите где находится палитра, и какому оборудованию отправляет данные:

  • IR.GetDevice("Driver") - имя драйвера, которому вы будете отправлять команды RGB. Скопируйте имя драйвера в PROJECT DEVICE PANEL
  • "Channel Red", "Channel Green", "Channel Blue" - имена переменных (Commands), которые отвечают за управление красной, зеленой, и синей составляющими цвета. Скопируйте имена в PROJECT DEVICE PANEL. Имена Commands должны совпадать с именами Feedbacks, откуда приходит информация о текущем цвете RGB ленты.
    HDL-Buspro, Domintell - имеют особый способ записи имен. Для них нужно указать <имя устройства в сети>:<имя канала>, например "Dimmer in Bedroom:Channel 1"
  • 255 - максимальное значение яркости для каждого цвета. Для большей части оборудования яркость регулируется от 0 до 255, но есть драйверы, которые управляют яркостью цвета в диапазоне 0...100 (например, HDL). Для HDL-Buspro укажите значение 100 в этой строке настроек.
  • IR.GetItem("Page 1").GetItem("Item Color Picker 1") - имя страницы ("Page 1") и элемента на ней ("Item Color Picker 1") который вы будете использовать как палитру
  • IR.GetItem("Page 1").GetItem("Item Display 1") - имя страницы ("Page 1") и элемента на ней ("Item Display 1") который вы будете использовать для отображения цвета, выбранного на палитре
  • IR.GetItem("Page 1").GetItem("Up 1") - имя страницы ("Page 1") и элемента на ней ("Up 1") который будет при нажатии увеличивать яркость выбранного цвета
  • IR.GetItem("Page 1").GetItem("Down 1") - имя страницы ("Page 1") и элемента на ней ("Down 1") который будет при нажатии уменшать яркость выбранного цвета
  • 10 - значение, на которое увеличится/уменьшится яркость выбранного цвета при нажатии кнопок Up и Down

Ошибки, которые могут возникать при некорректном описании палитры, отображаются в окне лога (F4)


RGBW освещение

1 Разместите и настройте на экране:

2 В драйвер добавьте тэги:

3 Работа со цветовыми компонентами RGBW осуществляется с помощью функций библиотеки RGBW_Library.js .

Скачайте библиотеку и добавьте её в проект: нажмите клавишу , выберите пункт (+) "Add Script From File".

4 Добавьте вызовы функций следующим образом: создайте пустой файл скрипта (+) "New Script", скопируйте код ниже, модифицируйте его под свою задачу:

RGB_player( "Driver" , // Driver in project "R_command" , // Name of Red Channel "G_command" , // Name of Green Channel "B_command" , // Name of Blue Channel 255 , // Top limit for RGB channels (255 or 100) IR.GetItem ("Main_page" ) .GetItem ("joystick color picker circle 596x379" ) // Item "Color Picker" ) ; RGBW_add_color_listener( IR.GetDevice ("Driver" ) , // Driver in project "R_feedback" , // Name of Red Channel "G_feedback" , // Name of Green Channel "B_feedback" , // Name of Blue Channel "W_feedback" , // Name of White Channel 255 , // Top limit for RGBW channels (255 or 100) IR.GetItem ("Main_page" ) .GetItem ("Display Item 1" ) , // Item "Color Display" IR.GetItem ("Main_page" ) .GetItem ("Slider Level 1" ) // Item "White Display" ) ;

Функция RGB_player() предназначена для создания связи между палитрой и каналами драйвера. При нажатии на палитру запускается скрипт, он получает координаты X и Y курсора, наведённого на палитру, считывает значения цветовых компонентов пикселя изображения под курсором и помещает их в каналы R_command, G_command, B_command.

Изображение палитры может быть произвольным, вы можете заменить изображение на любое собственное.

Функция RGBW_add_color_listener() связывает каналы обратной связи R_feedback, G_feedback, B_feedback, W_feedback с графическими элементами, которые отображают цвет и яркость белого.

Вы можете добавить несколько дополнительных палитр на экран и несколько дополнительных RGBW-каналов в драйверах, тогда вы должны добавить соответствующее число вызовов функции RGB_player() и RGBW_add_color_listener() . При этом библиотека RGBW_Library.js должна быть добавлена только один раз.

Скрипт вызова функций RGB_player() и RGBW_add_color_listener() должен находиться в списке ниже скрипта библиотеки RGBW_Library.js , иначе возникнет ошибка, и скрипты не будут работать.

5 Перетащите тэг W_command на уровень Level и включите связь по событию Release (отпускание).

Вы можете работать с диммерами, которые поддерживают различные диапазоны значений цветовых компонентов (стандартно 0-255 или 0-100). Для этого задайте соответствующее максимальное значение диапазона в трёх местах проекта: один раз в свойстве Max графического элемента Level и дважды в скрипте: при вызове функций RGB_player() и RGBW_add_color_listener() .


Макро-команды

К одному графическому элементу можно привязать несколько команд, они будут отправлены оборудованию по порядку, сверху вниз, без задержки. Канал обратной связи можно привязать только 1, иначе входящие данные будут обработаны некорректно.

Чтобы привязать несколько команд к 1 графическому элементу, перетяните их, одну за другой, на этот элемент. Выберите подходящие события (Press, Release, Move) в диалоге привязки:

  • Show log at Emuator Start - автоматически открывать окно лога (иначе лог можно открыть по нажатию F4)
  • Горячие клавиши:

    • F4 - открыть лог
    • F5 - запустить Эмулятор
    • F7 - открыть меню управления аккаунтом и проектами
    • F8 - открыть системные настройки (введите пароль 2007 )


    Синхронизация с панелью управления

    Если вы - интегратор, вы можете быстро запустить созданный интерфейс визуализации на панели управления - смартфоне, планшете или ПК. Установите приложение i3 pro и авторизуйтесь в нем с помощью вашего логина и пароля интегратора с сайта iRidium Mobile.

    Используйте i3 pro для iOS, Android, Windows, Mac в тестовом режиме, загружая проекты через iRidium Transfer (возможность доступна только для интеграторов):

    На сайте iRidium Mobile (см. инструкцию).

    iRidium Cloud может настроить только зарегистрированный интегратор. После настройки, доступно приглашение пользователей к управлению объектом автоматизации.

    Одно из основных требований, которые предъявляют к умному дому, это значительное снижение расходов на электроэнергию. Ведь сама концепция умного дома предполагает управление потреблением электроэнергии, чтобы снизить его расход в тех комнатах и ситуациях, в которых можно обойтись естественным освещением. Поэтому умный дом контролирует не только освещение, но и отопление, а также другие функции. Еще одно требование к умному дому – возможность без серьезной доработки применять оборудование от различных производителей. Именно для этой цели и был разработан стандарт KNX.

    Каждый владелец умного дома желает подстроить его под какие-то свои требования и пожелания. Разработка системы управления таким домом с нуля обойдется очень дорого, поэтому гораздо проще взять максимально гибкую систему и выстроить ее архитектуру в соответствии со своими пожеланиями. Стандарт KNX – общая системная платформа, позволяющая использовать аппаратуру любого производителя, придерживающегося этого стандарта.

    Кроме того, KNX – это набор протоколов для обмена данными между всеми участниками системы. Поэтому установка нового оборудования требует лишь минимального вмешательства в систему, ведь все элементы умного дома работают по одному стандарту и обмениваются данными по одним протоколам.

    KNX – это шина, которая объединяет все элементы умного дома в единое целое. Основное преимущество KNX в невероятной гибкости, ведь для изменения конфигурации всей системы достаточно удалить ненужные элементы и установить вместо них более подходящие или необходимые. При этом не придется менять управляющую систему, перепрограммировать ее и мучительно согласовывать ее элементы между собой. Ведь недавно именно это и было главной проблемой, над которой бились монтажники управляющих систем умных домов – каждый производитель придерживался собственных стандартов, поэтому приходилось придумывать способы согласования деталей между собой.

    Возможности шины KNX

    На самом деле вопрос не в том, что может KNX, а в том, чего хочет владелец умного дома. Шинная система управляет любым оборудованием по заданному ей алгоритму, поэтому в рамках этой задачи KNX может все. Система, работающая на этом стандарте управляет всеми потребителями электричества в умном доме, поэтому KNX может обеспечить их работу в любых допустимых режимах, в зависимости от настроек и пожеланий владельца дома. Поэтому возможности систем стандарта KNX напрямую зависят от того оборудования, которое к ним подключено.

    Использование шины KNX позволяет создавать различные системы управления умным домом. К примеру, система free@home от концерна ABB позволяет создать универсальную и простую в настройке и использовании систему, в которой управление домом может осуществляться в трех режимах:

    • автоматическом;
    • через команды с сенсорного пульта управления;
    • с помощью мобильного приложения для смартфона или планшета.

    Все три режима обеспечивают полный контроль над энергопотреблением умного дома. Поэтому даже находясь далеко от дома, вы сможете контролировать безопасность своего жилища, наблюдать за детьми, включать и выключать различные электрические приборы.

    Как это работает

    Каждое устройство, подключенное к шине KNX имеет свой уникальный ip-адрес, а также список устройств, с которыми оно взаимодействует. Датчики и иные устройства, отслеживающие изменение обстановки, запрограммированы таким образом, чтобы при наступлении определенного события посылать связанным с ним устройствам сигнал.

    В зависимости от настроек системы конечные устройства, которые и управляют подачей электроэнергии на различные приборы, могут реагировать как на определенные ситуации, так и на целый перечень различных событий. Поскольку к одной линии нельзя подключить больше 64 любых устройств, используют различные способы соединения нескольких шин в одну систему. В таких объединенных системах все происходит по стандарту KNX, поэтому никаких серьезных сложностей с настройкой не возникает.

    Для связи между устройствами вне шины используют три вида каналов:

    • проводные;
    • оптические;
    • радиочастотные.

    Проводные каналы наиболее востребованы, ведь для подключения к ним конечного устройства не требуется никаких дополнительных манипуляций. Оптическими и радиочастотными каналами пользуются лишь в том случае, если все, связанные этими каналами устройства, оснащены соответствующими приемо-передатчиками. В частности, эти каналы используют для подключения выносных видеокамер там, куда по каким-то причинам невозможно проложить проводной канал шины. По всем каналам связь между устройствами происходит по одним и тем же протоколам стандарта KNX.

    Что такое ABB

    Концерн ABB (в русской транскрипции АББ) занимается разработкой и производством оборудования для автоматизации различных процессов, в том числе для управляющих систем умных домов. Концерн был образован в 1988 году после слияния шведской компании Asea и швейцарской компании ВВС (Brown, Boveri & Cie). К этому времени обе компании обладали колоссальным опытом в сфере информационных технологий и автоматизации, поэтому АББ была одним из создателей стандарта KNX.

    Концерн предлагает огромный перечень устройств, необходимых для создания полноценной сети, которая будет эффективно управлять умным домом. Несмотря на немалую стоимость, продукция концерна пользуется устойчивым спросом, потому что отличается великолепными характеристиками и полным соответствием стандарту KNX. К примеру, 12-канальный активатор отопления HA-M-0.12.1, который может одновременно управлять работой 12 клапанов системы отопления, обойдется в 23 тысячи рублей. Это заметно дороже китайских аналогов, но и гораздо надежней. Еще один пример – дисплей с поворотным управляющим элементом от ABB обойдется в 70–100 тысяч рублей , тогда как малонадежный китайский аналог можно купить за 20–40 тысяч . Но велика вероятность, что китайский элемент не прослужит и 2 лет.

    Понравилась статья? Поделитесь с друзьями!